
Practical Specification of Belief Manipulation in Games

Markus Eger, Chris Martens
meger@ncsu.edu, crmarten@ncsu.edu
Principles of Expressive Machines Lab

NC State University
Raleigh, NC, USA

Abstract
Actions that affect knowledge asymmetrically between
agents occur in numerous domains, from card games such
as poker to the secure transmission of information. Applica-
tions in such domains often depend on reflection over knowl-
edge, including what an agent knows about what other agents
know. We are interested in enabling formal specification of
these systems which may be used for executable prototyping
as well as verification and other formal reasoning. Dynamic
Epistemic Logic provides a formal basis for such reasoning,
but is often prohibitively cumbersome to use in practice. We
present an implementation and macro system called Ostari,
backed by a particular flavor of Dynamic Epistemic Logic,
which allows us to scale the ideas to more realistic prob-
lems. We demonstrate how actions that manipulate agents’
beliefs can be written concisely and how this capability can
be applied to modeling a popular card game by utilizing our
system’s ability to execute action sequences, answer queries
about knowledge states, and find action sequences to satisfy
a particular goal.

Introduction
Epistemic logic, the logic of knowledge and belief (Hintikka
1962), is useful in distributed reasoning to be able to repre-
sent and reason about disparities in the knowledge of differ-
ent agents. For example, in many card games, players have a
hand of cards that is only visible to themselves. Agents play-
ing these games can benefit from having a model of what
their opponents know, as illustrated in figure 1, by using this
information to plan their actions. Several games are even
built around the notion of manipulating and reasoning about
other player’s beliefs. For example, Hanabi (Bauza 2011)
is a cooperative card game in which players cannot see the
cards in their own hand and have to give hints to their co-
operators to tell them about the cards in their hands. Playing
this game well requires reasoning about what the coopera-
tors already know and how they will interpret information
that is given to them. There are also social deduction games,
such as The Resistance (Eskridge 2009), One Night Ulti-
mate Werewolf (Alspach and Okui 2014) and many others,
in which players are secretly assigned to different factions
and have to deduce which other players are in the opposing
faction or factions.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

� ♥ ♠ ♥ ♦ ♣ ♣�

� ? ♠ ♥ ? ♠ ?�

� ♦ ? ? ♦ ♥ ♥�

Figure 1: Theory of mind: Having a mental model of other
agents’ mental models

For computational agents to perform this reasoning, they
need to be able to reason about other agents’ knowl-
edge (also known as theory of mind) including how it
changes over time. This kind of reasoning, captured for-
mally by Dynamic Epistemic Logic (DEL) (Van Ditmarsch,
van Der Hoek, and Kooi 2007), is arguably a fundamental
challenge of AI: cognitive scientists have linked it to so-
cial intelligence in humans (Baron-Cohen 1997; Wimmer
and Perner 1983), a phenomenon that AI researchers have
seen as critical for building collaborative systems from au-
tonomous agents (Castelfranchi 1998; Dignum, Prada, and
Hofstede 2014). While DEL provides an expressive theoret-
ical foundation, using it for any non-trivial problem can be
quite cumbersome, because the basic unit of reasoning is a
single literal. For example, in a card game, expressing that
a player gains knowledge of a particular card in their hand
requires enumerating all possible values that card can have
and joining them with the appropriate operator.

In this paper, we present our system Ostari, which pro-
vides an implementation of a particular flavor of DEL, pre-
sented by Baltag (2002). Our contribution is this implemen-
tation and the included macro system that can be used to
describe epistemic actions in a concise way and a complete
run-time environment that allows users to define and execute
actions, as well as query the epistemic state, or define a goal

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

30

for which the system will find an action sequence. We will
also demonstrate how this implementation can be used to
express actions needed for Hanabi and briefly discuss other
applications.

We will now survey related work, describe Ostari and how
the macros are compiled to Baltag, and then describe our
Hanabi case study that demonstrates our system’s ability to
execute actions and answer queries about epistemic actions
and knowledge propagation.

Related Work
Modeling agent knowledge and how it changes over time has
been of interest to researchers for a number of applications,
such as teamwork in networks without central coordination
(Roth, Simmons, and Veloso 2005), consensus in distributed
systems (Olfati-Saber, Fax, and Murray 2007), and security
of information flow in programs (Sabelfeld and Myers 2003)
or between agents (Van Eijck and Gattinger 2015).

Different features of knowledge are required for differ-
ent applications: In the simplest case, we need only to tag
knowledge with an agent or set of agents that knows it.
Reflective knowledge (Sosa 2009) allows agents to reason
about what is not known and what others know (or do not
know). Without this stratification, agents could not reason
about the effects of their actions on the epistemic states of
other agents.

The two features of dynamism (changing knowledge) and
reflection characterize the space that we investigate, since
this reasoning is what must be carried out to analyze play in
partial information games while also generalizing to other
domains.

There are more approaches to how to model agent’s
knowledge than we can enumerate here, so we will only
briefly talk about general approaches, including an exam-
ple for each. Many applications use specialized data struc-
tures that only capture the granularity of knowledge rel-
evant to that application, as e.g. in the work by Ryan et
al. (2015), who model characters that can misremember and
lie by tracking where they obtained each piece of informa-
tion. Another approach is to represent agents’ uncertainty
as multi-valued variables, which typically range over true/-
false/unknown, but can also be extended to a range of values
representing a probability of certainty. The work by Brenner
and Nebel (2009) is an example for this approach in a plan-
ning setting, but they do not have a representation for be-
liefs about other agents’ beliefs. Finally, some researchers,
such as Liau (2003), use modal logic to represent beliefs of
agents, including beliefs about beliefs. Our approach is also
based on such a logic, and we will therefore describe it in
more detail now.

Epistemic Modal Logic
Our work primarily draws from research on Epistemic
Modal Logic, using the classical model for knowledge based
on possible worlds, where something is considered to be
known by an agent if it holds in all worlds the agent consid-
ers possible. The standard semantical model for such log-
ics is given by Kripke structures (Kripke 1963). Since this

has been a topic of research for decades, in the interest of
brevity we will refer to Halpern (1986) for a survey of early
research on the topic. For our work, we are particularly in-
terested in how to model the change of agents’ knowledge
by actions. Van Ditmarsch et al. (2007) describe the history
of Dynamic Epistemic Logics1, which form the basis for our
work. Much of the research on Dynamic Epistemic Logic
has been about expressivity and provability, but our focus
lies with how to write actions concisely. We are not the first
ones to care about brevity, though. One of the claims of Be-
lardinelli et al. (2016) is that formulas in their logic are ex-
ponentially more succinct than a previously developed logic.
In contrast to their work, our work focuses more on devel-
oping human readable encodings of real world problems in
the style of imperative programming languages.

Baltag’s Action Language
The logical language we use as the basis of our work was
developed by Alexandru Baltag to describe games with be-
lief updates and suspicious players (Baltag 2002). This lan-
guage has very few primitives, which makes it very suitable
for reasoning and implementation, but is capable of express-
ing a wide range of actions, including deception and agents
merely suspecting that an action is happening, even if that
is not actually the case. Actions include flip p, which “flips”
the truth value of a single literal p; the test operator ?p, which
only executes subsequent actions if p holds; a sequencing
operator a · b (product); and non-deterministic choice be-
tween two actions a+ b (sum). Baltag also includes notation
for aggregate sums and products Σiai and Πiai.

Actions in Baltag are applied to an epistemic state, which
consists of a set of worlds, with one world marked as the
actual world, and an accessibility relation between worlds
for each agent that defines which worlds an agent considers
possible in any particular world. A belief of an agent d, writ-
ten �ap, means that p holds in all worlds that are accessible
from the actual world.

Epistemic actions describe how an action appears to
agents. The suspicion operator (a)d represents that an agent
d suspects that the action a is happening, but by itself this
does not cause a to actually happen. The mutual, introspec-
tive learning operator (a)∗D, on the other hand, causes a
group of agents D to truthfully and mutually learns that a is
happening, i.e. a happens and every agent in D is aware of it
happening, and is aware that every other agent in D is aware
of it happening, etc.

Actions are represented by event structures, which are
similar to Kripke structures, consisting of a set of possible
actions (as opposed to possible worlds in a Kripke structure),
with one of them marked as the actual action and an accessi-
bility relation →d for each agent d between the possible ac-
tions. The interpretation of this accessibility relation is that
when an action a happens, an agent believes that any action
a′ that can be accessed via a →d a′ could have happened.

1Many authors distinguish between Public Announcement
Logic (Plaza 1989) and Dynamic Epistemic Logic, but we will fol-
low Van Ditmarsch et al.’s terminology and refer to all of these as
Dynamic Epistemic Logics.

31

In contrast to Kripke structures, event structures addition-
ally have preconditions associated with each possible action
that define in which worlds they are applicable. For example,
Baltag defines a classical if statement, e.g. if(p) then
φ else ψ, as (?p ·φ+?¬p ·ψ). When applying such a non-
deterministic action to an epistemic state, each determinis-
tic option is applied to the state, if its precondition holds in
that state. In this case, exactly one of the two options will
hold, since either p or ¬p will hold, but in the general case,
the result of an action application can be a set of worlds.
To apply the appearance of an action (a)d, it is applied to
all worlds that are accessible by d from the actual world in
which its preconditions hold. If an action appears to an agent
as a non-deterministic choice between multiple actions that
change the world in different ways, applying this action to
a world they consider possible will result in multiple new
worlds they now consider possible, thus increasing their un-
certainty about the world. Conversely, if an action that ap-
pears to an agent as having preconditions, that action will
only be applicable in worlds in which these preconditions
hold, and the agent will no longer consider other worlds pos-
sible, decreasing their uncertainty.

Practical Specifications
Our system, Ostari was designed around two key ideas: The
first is that instead of manipulating single bits/literals, users
can define properties, which are partial functions with sig-
natures defined in the execution environment or context. For
example, the context for a card game may define a property
atwith a signature of Players×HandIndex �→ Cards . The
second idea is the use of a more procedurally oriented syntax
with statement types that represent common epistemic oper-
ations. These statements are used to compose actions that
manipulate the values assigned to properties as well as play-
ers’ knowledge about them. Our system then translates these
statements and property definitions that provide a compact
representation of the actions into the corresponding, typi-
cally much larger, Baltag expressions. In this section we will
not only discuss how our system performs this translation,
but also how we ensure that we do not actually have to gen-
erate and evaluate the full, compiled formula.

Syntax
The basic building block of Ostari is an action, which is a
block of code that has public and secret parameters and con-
ditionally sets property values and/or manipulates agents’
knowledge. Secret parameters are only known to a subset of
the agents. Listing 1 shows an action for a made-up game in
which the objective is to find Aces in the players’ hands, and
hands are hidden from all players (including the holder). It
can be read as: findaos is an action with two parameters:
p, a Player , and i, a HandIndex . When the action is exe-
cuted, if p knows (the symbols [] represent �) that the ith
card in their hand is the Ace of Spades, all players are told
that p has it (but not where!). Otherwise, p (but not the other
players) learns truthfully which card they actually have at
their ith hand position. We will describe how the individual
statement types map to Baltag in more detail below.

findaos(p: Players, i: HandIndex)
if ([] p at(p,i,AceOfSpades))

public (Players) holder(AceOfSpades) = p
else

learn (p) Which c in Cards: at(p,i) == c

Listing 1: An example for an action written in Ostari

More generally, the BNF definition of what an action defini-
tion looks like can be seen in figure 2.

〈action〉 ::= 〈identifier〉(〈parameter〉*) 〈statement〉
〈parameter〉 ::= 〈identifier〉 : 〈identifier〉
| 〈identifier〉(〈player〉+) : 〈identifier〉

〈statement〉 ::= 〈property〉 = 〈term〉
| learn (〈player〉+) 〈fact〉
| suspect (〈player〉+) 〈fact〉
| public (〈player〉+) 〈statement〉
| if (〈condition〉) 〈statement〉 else 〈statement〉
| { 〈statement〉* }

〈term〉 ::= 〈property〉
| 〈constant〉
| Null

〈property〉 ::= 〈identifier〉 (〈term〉*)

〈fact〉 ::= 〈condition〉
| Each 〈identifier〉 in 〈identifier〉 : 〈condition〉
| Which 〈identifier〉 in 〈identifier〉 : 〈condition〉

〈condition〉 ::= 〈property〉 == 〈term〉
| 〈property〉 != 〈term〉
| Forall 〈identifier〉 in 〈identifier〉 : 〈condition〉
| Exists 〈identifier〉 in 〈identifier〉 : 〈condition〉
| [] (〈player〉): 〈condition〉
| not [] (〈player〉): 〈condition〉
| 〈condition〉 or 〈condition〉
| 〈condition〉 and 〈condition〉

Figure 2: The syntax for action definitions in Ostari

Compilation to Baltag
When an action is executed by providing values for its pa-
rameters, the macros have to be compiled to Baltag. First,
the public parameters are substituted throughout the action
body for the values provided for them. For secret parame-
ters, there will be two versions of the action: One, φ, with the
actual value substituted for it, called the actual action, and
one,

∑
i ψi consisting of the sum (non-deterministic choice)

of actions with all possible assignments for the parameter
values, called the appearance. The actual action is the one
that is executed, and visible to the agents a aware of the
value of the secret parameters, whereas the appearance de-
scribes all possible assignments, which is how the action ap-
pears to all other agents B. We encode the whole action as
(φ) ∗a .(∑i ψi)

B . We will now describe in detail how prop-

32

erties are compiled to predicates and then briefly outline how
the individual statements are compiled.

Property compilation During compilation, a property
p(x) = y is mapped to a predicate P (x, y). By defini-
tion, among all possible values of y at most one of the
P (x, y) holds at any time. If none holds, it means the prop-
erty is not set, otherwise it is set to the value of y for which
P (x, y) holds. Property expressions can be nested, and spe-
cial care has to be taken when compiling a property term
that appears inside another expression. Consider, for ex-
ample f(g(x)) = y. Another way to express this would
be Exists x’: g(x) = x’ and f(x’) = y, or in
predicates ∃x′ G(x, x′) ∧ F (x′, y). However, formulas in
Baltag cannot have quantified variables, so to compile these
expressions we need to resolve the quantifier by insert-
ing all values the variable can take, and connecting the re-
sulting formulas with the choice operator +, resulting in∑

x′?G(x, x′)·?F (x′, y). Since every property can only be
set to at most one value, for each such sum, at most one term
will be applicable in any particular world. Now consider an
expression that has multiple layers of nesting. From the in-
side out, we take the property, prepend it to the formula and
add an existential quantifier. To resolve the quantifiers, we
then construct a formula for every combination of values of
these temporary variables and join all of these formulas with
the choice operator. The resulting formula will thus have the
form

∑
�v?F1(x,�v1) ·

∏
i?Fi(vi, vi+1)·?Fn(vn, y), where �v

ranges over all combinations of assignments of values to the
temporary variables.

Statement Compilation While it is possible to write
terms directly in Baltag in our system, by embedding them in
angle brackets, it is usually more convenient to make use of
our macro system. It compiles the different statement types
in the following way:
• Assignment statements (f(x) = y) are compiled to

two parts, that are executed in order: First, F (x, y′) is
flipped if it currently holds for any y′, i.e. if f(x) was
previously set to some y′, it will be unset, then F (x, y) is
flipped.

• Suspect and Learn (suspect/learn (a) p) state-
ments are simply wrappers for Baltag’s (suspicious) learn
and mutual, truthful learn operators, i.e. they are compiled
to (p)a or (p)∗a, respectively. Since p can only be a con-
dition, it will never modify the actual world, and thus the
only difference between suspect and learn is that the
former does not necessarily provide truthful information.

• precondition statements (precondition p) are com-
piled to Baltag test statements, i.e. ?p.

• If/Else statements (if p then a else b) are com-
piled to a non-deterministic choice, where one choice
has p as a precondition, while the other has ¬p, i.e.
?p · a+?¬p · b.

• The Public modifier (public (a) s) can be used on
any statement, and causes that statement to be wrapped
in a mutual, truthful learning operator, i.e. (s)∗a. This is
used to make changes in the world known to the agents.

An if statement modified by a public modifier will
have both choices wrapped in the mutual learning oper-
ator individually, i.e. the agents will know which branch
was taken.

Note that the condition used in the suspect and learn
statements can have two additional, special quantifiers:

• learn/suspect Which behaves similar to
learn/suspect Exists, in that it tells the
agent whether there is at least one item satisfy-
ing the condition, but additionally it tells the agent
which item that is. In terms of Baltag, learn (d):
Exists x in Xs: p(x)==y will be mapped
to (?P (x1, y)+?P (x2, y) + · · ·+?P (xn, y))∗d,
i.e. an action that applies whenever any of the
p(xi) holds, whereas learn (d): Which
x in Xs: p(x)==y will be mapped to
(?P (x1, y)) ∗d +(?P (x2, y)) ∗d + · · · + (?P (xn, y))∗d,
with the mutual learning operator applied to each term in
the sum individually. The main use of learn/suspect
Which is to inform an agent about the value of a prop-
erty. Since a property can only have one value, only one
of the non-deterministic choices will apply. For example,
the action of a player looking at the top card of the
deck may be encoded as learn (d): Which c in
Cards: at(deck, 1) == c.

• learn/suspect Each is used in another common sce-
nario, in which an agent should learn about all
values that satisfy a given condition. For exam-
ple, to tell a player which cards in their hand are
spades, one would write learn (d): Each i in
Index: suit(at(hand, i)) == spades. The
Each quantifier will result in an action, that consists of
a sequence with one item for each element of the set
that is quantified over. Each of these items is a non-
deterministic choice between a test of the condition and a
test of the negation of the condition for the given element,
and these are individually wrapped in the learning opera-
tor. In other words, for each element of the set, the agents
learn whether or not the condition holds for it, which ul-
timately tells them exactly for which subset of elements
it holds. For example, if the player has 2 cards in hand,
i will range over the elements 1 and 2, and for each of
these values the formula will be (?(suit(at(hand , i)) ==
spades)) ∗d + (?¬(suit(at(hand , i)) == spades))∗d,
with i substituted accordingly. The resulting terms are
then joined using the composition operator. Note that
suit(at(hand , i)) == spades will be expanded as de-
scribed above to use predicates. We omitted this transla-
tion here for brevity.

Implementation Details
We have implemented our system Ostari in Haskell, which
evaluates expressions lazily. Our implementation makes use
of this fact in several places. States are represented as tu-
ples containing the facts that hold in the actual world, and,
instead of having an explicit list of all possible worlds, the
appearance map as a function. For a given agent d, this func-
tion returns the set of all worlds that are reachable from the

33

actual world. However, these worlds, in turn, have facts that
hold in them and their own appearance to agents, and thus
their own appearance map, i.e. they are also tuples consist-
ing of facts and an appearance map function, using the same
representation as we use for the actual world. This allows
us to recursively apply the appearances of actions to the ap-
pearance of a world in exactly the same way as we apply
the actual action to the actual world, and results in an ar-
bitrarily nestable theory of mind. But consider what would
happen if we did not have lazy evaluation at this point: When
we apply an action to a world, we apply the appearance of
that action to the appearance of that world. However, the ap-
pearance of each action in turn contains an appearance map,
that would have to be applied to the appearance of the ap-
pearance of the world, and so on. In other words, because
action and state appearances are defined recursively, apply-
ing an action would also recursively apply its appearances
to infinitely many levels. In practice, the number of worlds
will be finite, avoiding infinite appearance application, but
would still require applying actions and their appearances
to a potentially very large number of states and appearances
or states. Using lazy evaluation, however, we will only ever
apply actions to the appearances of states that are actually
eventually observed using a query or print operation.

When compiling nested property terms to predicates,
the number of terms is exponential in the number
of levels of nesting, i.e. �v will range over an ex-
ponential number of values in the resulting formula∑

�v?f1(x, v1) ·
∏

i?fi(vi, vi+1)·?fn(vn, y). Our implemen-
tation addresses this problem in two ways. First, note
that for any fixed value for v1, we have all possi-
ble assignments of values to v2 through vn. An alter-
native compilation would therefore be

∑
v1
?f1(x, v1) ·

(
∑

�v?f2(x, v2) ·
∏

i?fi(vi, vi+1)·?fn(vn, y)), where �v now
only ranges over the variables v2 through vn. Of course, in
total we still end up with the same number of choices, but
the actual execution is faster, because for every v1 for which
f1(x, v1) does not hold in the state the action is executed in,
the whole inner sum does not need to be evaluated at all, and
because of Haskell’s lazy evaluation we never even generate
those terms in that case. We can then recursively repeat this
process for the inner sum. It is also not necessary to start
with variable v1, and in fact our approach instead uses the
variables in descending order of how many values they can
take, eliminating more branches early.

Another optimization comes from an observation made in
practice. When using Ostari, some property values are never
going to change, and others only have a limited range that
depends on their arguments. For example, a property color
of a card never changes in most games, while a property
top that maps card stacks to cards may only have a limited
range, for example when only red cards may be put onto the
red stack. Our system allows users to designate properties
as static, meaning they never change, or restricted, mean-
ing they can only hold for a subset of their domain. These
restrictions cause the compilation process to only include
terms in which all properties have valid values. Furthermore,
because static properties always have the same value, we can
also drop the actual check in the resulting formula.

Applications
To demonstrate the capabilities of Ostari we will discuss in
detail how it can be used to describe game actions of the co-
operative card game Hanabi, and how these actions can then
be used to design agents for the game. This demonstration
is intended to show how concisely actions can be written
using our macros compared to how verbose a direct encod-
ing in Baltag would be, but also how our system can answer
queries about the epistemic state of agents and demonstrate
its other capabilities. We will also briefly describe other ap-
plications of our system.

Hanabi
Hanabi (Bauza 2011) is a cooperative card game, in which
players build fireworks, represented by stacks of cards with
ranks from 1 to 5 in five different colors. Contrary to most
other card games, players hold cards with the faces point-
ing away from themselves, so that everyone sees everyone
else’s cards, but not their own. The goal of the game is to
place cards in ascending rank on the stack corresponding
to their color. To provide information to players about their
cards, hints may be given to a player. Every such hint tells
a player all cards in their hand that have a specific color or
rank, for example which of their cards are red. Hanabi is an
interesting game for AI researchers because it requires com-
munication to overcome the limitations of partial observabil-
ity, but only provides very limited options for this commu-
nication. Osawa (2015) developed several AI agents for the
game, noting that having a model of what the other agent
knows improves the score that is obtained by the agents.

Listing 2 shows how the action representing giving a
player the hint that tells them about all their cards of a par-
ticular color could be encoded in Ostari. For comparison, for
five cards in a player’s hand, this operation alone compiles
to 125 terms in the resulting Baltag formula, when using the
optimizations of term reordering and eliminating static prop-
erties described above. This formula would already be cum-
bersome to write by hand, but also not intuitive to come up
with. A naive approach involving enumerating all possible
hands would be completely infeasible, as it would require
at least

(
25
5

)
= 53130 terms. Our macros take the burden

of coming up with clever encodings to shorten these expres-
sions from the user and perform them automatically.

hintcolor(p: Players, c: Colors)
learn (p): Each i in HandIndex:

color(at(p, i)) == c

Listing 2: The “hint about a color” action for Hanabi

In the initial state of the game, every player knows every
other player’s cards, as well as that they know the respective
other player’s cards, etc. Additionally, every player would
consider every world possible in which the cards in their
own hand are among those that they don’t see. Executing
a hint action will then eliminate all worlds that would con-
flict with the information that was given from the player’s
set of worlds they consider possible.

Listing 3 shows how the action of playing a card could
be encoded using our macros. If the card is the next one in

34

sequence, it will be put on top of the corresponding stack,
otherwise the number of mistakes the players made will in-
crease by one. When compiled to Baltag, the condition in
the if statement alone results in 888 terms. Ostari, in com-
parison, allows a very concise description of game rules.

play(p: Players, i: HandIndex)
{

public if (rank(at(p,i)) ==
succ(rank(top(stack(at(p,i))))))

top(stack(at(p,i))) = at(p,i)
else

mistakes() = succ(mistakes())
public at(p,i) = Null

}

Listing 3: The “play a card” action for Hanabi

Epistemic Queries
Executing actions is only useful if we can also examine the
results. Our system provides several capabilities for this pur-
pose. On a basic level, it is possible to print the actual world
after the execution of any action, or to print the actual world
and what that world looks like to all agents. However, since
this contains every property assignment and there may be
a large number of worlds that an agent considers possible
this can quickly become unwieldy to read. We therefore also
provide a way to perform queries on the state. The syntax
for queries is equivalent to the syntax for conditions, so it
is possible to, for example, query if an agent knows that a
property has a certain value, which would otherwise require
manually verifying that this is the case in all worlds in the
appearance map. Listing 4 shows how to define what to ex-
ecute and query in our implementation. The query is to be
read as “Does a know that the card at position 1 in a’s hand
is the Red 1?”. While this is indeed the case, a does not know
anything about their hand initially, so the query is answered
with “False”. After the first action, which tells a where all
their red cards are, a still does not know that the card is a 1,
so the query is again answered with “False”. After the sec-
ond hint action, however, a knows that the card is red and a
1, so it is a red 1 in all worlds they deem possible, and the
query is answered with “True”.

query: [] (a): at(a,1) == Red1
hintcolor(a, red)
query: [] (a): at(a,1) == Red1
hintrank(a, 1)
query: [] (a): at(a,1) == Red1

Listing 4: An execution sequence for Hanabi

Another key feature of Baltag our system exposes is that
of suspecting actions that don’t actually happen. Instead of
executing e.g. hintcolor(a, red) it is possible to ex-
ecute b suspects hintcolor(a, red), which will
then update the suspecting agent’s mental state accordingly.
This capability may not seem very useful at first, but it
represents an agent’s planning of actions and imagining
what their outcome would be. To complement this plan-
ning process, it is also possible to specify a goal condi-
tion, which will cause the system to use breadth-first search

(Bundy and Wallen 1984) for a sequence of actions, both
executed and suspected ones that, when applied to the cur-
rent state, will cause the goal to be satisfied. For exam-
ple, instead of executing the two hint actions in listing 4,
we could have written goal: [] (a): at(a,1) ==
Red1 which would have caused the system to find a se-
quence of actions such as the one we executed.

Other applications
Hanabi is not the only game in which agents benefit from
having a mental model of other players’ beliefs. Our sys-
tem also allows concise definitions of game rules com-
monly found in social deduction games. In particular, One
Night Ultimate Werewolf combines actions that have both
epistemic- and non-epistemic effects, as in the troublemaker
role, that can secretly exchange the roles of two other play-
ers without any other player being aware of the exchange. In
contrast to Hanabi, One Night Ultimate Werewolf is also not
cooperative, and therefore players have an incentive to lie or
mislead. Baltag provides the means for players to merely
suspect an action happening or a fact being true, and our
macro system makes it easy to encode such actions.

Our system also has applications beyond games, like nar-
rative generation. In many stories it may be desirable for
actors to have a mental model of the beliefs of other actors.
Consider, for example, a detective story, in which the ac-
tions of the criminal depend on the beliefs of the detective,
or even just their beliefs about the beliefs of the detective.
Using our goal-directed search capabilities it is possible to
generate stories in which the murderer tries to mislead the
detective into suspecting another character of the crime.

Conclusion and Future Work
We have presented Ostari, our implementation of Baltag’s
variant of Dynamic Epistemic Logic, which is available on
github2. Our implementation provides several macros that
make writing actions that manipulate agents’ beliefs less
cumbersome than writing them in the logic directly, while
still exposing the expressivity of the logic. This includes
the ability to have agents suspect actions or be uninformed
about some details of an action, such as the value of some of
the parameters. We have detailed how our macros are com-
piled to Baltag formulas, with few lines of Ostari code of-
ten resulting in hundreds of terms in the formula. Our sys-
tem allows users to define such actions, an initial epistemic
state and an execution sequence. This execution sequence
can consist of actions that are applied to the epistemic state,
queries on the state, as well as goal directives that cause the
system to find a sequence of actions such that the goal is
reached. We have shown in detail how our system applies to
the cooperative card game and briefly provided an overview
of other applications. For future work, we plan on applying
our system to more games in which manipulating and rea-
soning about players’ beliefs is an integral part of game play
and use it as the basis for a framework for agents for such
games.

2http://github.com/yawgmoth/Ostari

35

References
Alspach, T., and Okui, A. 2014. One night ulti-
mate werewolf. https://beziergames.com/collections/all-
uw-titles/products/one-night-ultimate-werewolf.
Baltag, A. 2002. A logic for suspicious players: Epistemic
actions and belief–updates in games. Bulletin of Economic
Research 54(1):1–45.
Baron-Cohen, S. 1997. Mindblindness: An essay on autism
and theory of mind. MIT press.
Bauza, A. 2011. Hanabi. http://www.antoinebauza.fr/?tag=
hanabi.
Belardinelli, F.; van Ditmarsch, H.; and van der Hoek, W.
2016. Second-order propositional announcement logic. In
Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, 635–643. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Autonomous
Agents and Multi-Agent Systems 19(3):297–331.
Bundy, A., and Wallen, L. 1984. Breadth-first search. In
Catalogue of Artificial Intelligence Tools. Springer. 13–13.
Castelfranchi, C. 1998. Modelling social action for ai
agents. Artificial Intelligence 103(1):157–182.
Dignum, F.; Prada, R.; and Hofstede, G. J. 2014. From
autistic to social agents. In Proceedings of the 2014 in-
ternational conference on Autonomous agents and multi-
agent systems, 1161–1164. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Eskridge, D. 2009. The resistance. http://www.
indieboardsandcards.com/resistance.php.
Halpern, J. Y. 1986. Reasoning about knowledge: an
overview. In Proceedings of the 1986 Conference on Theo-
retical aspects of reasoning about knowledge, 1–17. Morgan
Kaufmann Publishers Inc.
Hintikka, J. 1962. Knowledge and belief: an introduction to
the logic of the two notions, volume 4. Cornell University
Press Ithaca.
Kripke, S. A. 1963. Semantical analysis of modal logic
i normal modal propositional calculi. Mathematical Logic
Quarterly 9(5-6):67–96.
Liau, C.-J. 2003. Belief, information acquisition, and trust
in multi-agent systems–a modal logic formulation. Artificial
Intelligence 149(1):31–60.
Olfati-Saber, R.; Fax, J. A.; and Murray, R. M. 2007. Con-
sensus and cooperation in networked multi-agent systems.
Proceedings of the IEEE 95(1):215–233.
Osawa, H. 2015. Solving Hanabi: Estimating hands by op-
ponent’s actions in cooperative game with incomplete infor-
mation. In Workshops at the Twenty-Ninth AAAI Conference
on Artificial Intelligence.
Plaza, J. 1989. Logics of public communications. In Pro-
ceedings of the 4th ISMIS, 201–216. Oak Ridge National
Laboratory.

Roth, M.; Simmons, R.; and Veloso, M. 2005. Decentralized
communication strategies for coordinated multi-agent poli-
cies. In Multi-Robot Systems. From Swarms to Intelligent
Automata Volume III. Springer. 93–105.
Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015. Toward characters who observe, tell, misre-
member, and lie. Proc. Experimental AI in Games 2.
Sabelfeld, A., and Myers, A. C. 2003. Language-based
information-flow security. IEEE Journal on selected areas
in communications 21(1):5–19.
Sosa, E. 2009. Reflective knowledge: Apt belief and reflec-
tive knowledge, volume 2. Oxford University Press.
Van Ditmarsch, H.; van Der Hoek, W.; and Kooi, B. 2007.
Dynamic epistemic logic, volume 337. Springer Science &
Business Media.
Van Eijck, J., and Gattinger, M. 2015. Elements of epis-
temic crypto logic. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Sys-
tems, 1795–1796. International Foundation for Autonomous
Agents and Multiagent Systems.
Wimmer, H., and Perner, J. 1983. Beliefs about beliefs:
Representation and constraining function of wrong beliefs
in young children’s understanding of deception. Cognition
13(1):103–128.

36

